

Tuesday 9/17	Today's Topic: The Derivative and Tangent Line Problem; Derivative as the limit of the difference quotient; Definition of the Derivative = slope of the tangent line to a graph; Finding the slope of a graph or its tangent line at a point; Notations for the derivative.
In-class examples:	Ex. 1 Find the equation of the line that is tangent to the graph of $f(x) = x^2$ at the point (3,9). Ex. 2 Find $\frac{dy}{dx}$ when $y = 2x + 3$. Ex. 3 Find the derivative of $f(x) = x^2 - 6x + 11$ Ex. 4 Find the derivative of $y = \sqrt{x}$.
AP Multiple Choice	
None	
Homework: Worksheet	21

Wednesday 9/18	Today's Topic: The Power Rule – In the next few weeks we will be learning how to find the derivative of a number of different types of functions. Today, we will look at constant functions and functions that involve $a \cdot x^n$.		
	Remember: Finding the derivative means that we are finding the slope of a function.		
In-class examples: Differentiate ex	ach function. Label each function appropriately (i.e. $y' = _$ or $f'(x) = _$)		
Ex. 1 a) $y = 3x^2$	b) $s(t) = -4.9t^2 + 120t + 80$		
c) $f(x) =$	= $4\sqrt{x} - \frac{1}{x}$ d) $h(t) = -5t^{-3} + \frac{3}{\sqrt[3]{t^4}} - 5t + 4$		
Ex. 2 Find the slo	Ex. 2 Find the slope of $f(x) = x^3 + 3x - 1$ at $x = 2$.		
AP Multiple Choice			
If $f(x) = x^3 - x^2 + x - 1$, the function of $x^3 - x^2 + x - 1$, the function of $x^3 - x^2 + x - 1$.	hen $f'(2) =$		
(A) 10 (B) 9 (C	C) 7 (D) 5 (E) 3		
If $f(x) = \sqrt{x} + \frac{3}{\sqrt{x}}$, then f'	(4) =		
(A) $\frac{1}{16}$ (B) $\frac{5}{16}$	(C) 1 (D) $\frac{7}{2}$ (E) $\frac{49}{4}$		
Homework: Worksheet 22			

Thursday 9/19	Today's Topic : We will be using the Power Rule in order to find equations of tangent lines. We will also be determining the points at which a graph has a horizontal tangent line.
In-class examples:	Ex. 1 For the curve $f(x) = x^2 + 2x + 1$:
	a) Graph the curve.
	b) Find the equation of the tangent line to the curve at the point $(1,4)$. Graph the tangent line.
	c) Find the equation of the normal line to the curve at the point $(1,4)$. Graph the normal line.
	Ex. 2 Find the equations of the tangent and normal lines to the graph of $f(x) = x^3 - 3x + 2$ when $x = 2$.
	Ex. 3 For what value(s) of x does $y = x^4 - 4x^2 + 1$ have a horizontal tangent line?
AP Multiple Choice	
Let f be the function of f at $x = 3$	unction given by $f(x) = x^3 - 6x^2 + 8x - 2$. What is the instantaneous rate of change ?
(A) – 5	(B) $-\frac{15}{4}$ (C) -1 (D) 6 (E) 17
If $f(x) = 4x^{-2}$	$x^2 + \frac{1}{4}x^2 + 4$, then $f'(2) =$
(A) -62	(B) -58 (C) -3 (D) 0 (E) 1
Homework: Worksh	neet 23

Friday 9/20	Today's Topic: The Package Rule - We will be using this rule to find the derivate of composite		
	functions in the form of $f(x) = a \cdot \underline{stuff}^n$, where the <u>stuff</u> is some function other than x.		
In-class examples: Fin	d the derivative of each of the following:		
Ex. 1 $f(x) = (3x^2 - 4x + 1)^3$ Ex. 2 $y = \left(\frac{1}{2}x^2 - x^{\frac{1}{2}}\right)^3$ Ex. 3 $f(x) = \sqrt[3]{(x^2 - 1)^5}$ Ex. 4 $f(x) = \sin^3 x$			
Ex. 5 Find the equation	Ex. 5 Find the equation of the normal line to $f(x) = \sqrt{x-1}$ when $x = 5$.		
AP Multiple Choice			
If $f(x) = \sqrt{x^2 - 4}$	and $g(x) = 3x - 2$, then the derivative of $f(g(x))$ at $x = 3$ is		
(A) $\frac{7}{\sqrt{5}}$ (B)) $\frac{14}{\sqrt{5}}$ (C) $\frac{18}{\sqrt{5}}$ (D) $\frac{15}{\sqrt{21}}$ (E) $\frac{30}{\sqrt{21}}$		
Homework: Worksheet 24			

Monday 9/23Today's Topic: Product and Quotient Rules "Boxes and Triangles" - To find the derivative of a
function using the Product and Quotient Rules.In-class examples:

Ex. 1 Find
$$\frac{dy}{dx}$$
 if $y = (2x+1)(x^2-2)$
Ex. 2 Find $f'(x)$ if $f(x) = \frac{x^2-1}{x^2+3x+2}$
Ex. 3 Find $f'(x)$ for $f(x) = x^2(x-2)^4$.

AP Multiple Choice

$$\frac{d}{dx}\left(\frac{x+1}{x^2+1}\right) =$$
(A) $\frac{x^2+2x-1}{\left(x^2+1\right)^2}$ (B) $\frac{-x^2-2x+1}{x^2+1}$ (C) $\frac{-x^2-2x+1}{\left(x^2+1\right)^2}$ (D) $\frac{3x^2+2x+1}{\left(x^2+1\right)^2}$ (E) $\frac{1}{2x}$

Homework: Worksheet 25

Tuesday 9/24 Today's Topic: Derivatives Using Tables

In-class examples:

Ex.1 Let f(x) and g(x) be differentiable functions with the values for f(x), g(x), f'(x), and g'(x) as shown in the table below.

X	f(x)	f'(x)	g(x)	g'(x)
1	6	4	2	5
2	9	-2	3	1
3	10	-4	4	7
4	-1	-3	6	8

Determine each of the following values:

a)
$$h(x) = f(x) + g(x)$$
. Find $h'(1)$.
b) $p(x) = f(x) \cdot g(x)$. Find $p'(1)$.
c) $q(x) = \frac{f(x)}{g(x)}$. Find $q'(3)$.
d) $r(x) = [f(x)]^4$. Find $r'(1)$.

e)
$$c(x) = f(g(x))$$
. Find $c'(3)$.

AP Multiple Choice

x	f(x)	f'(x)	g(x)	g'(x)
0	3	4	2	π

The table above gives values of the differentiable functions f and g and their derivatives at x = 0.

If
$$h(x) = \frac{f(x)}{g(x)}$$
, what is the value of $h'(0)$?
(A) $\frac{8-3\pi}{4}$ (B) $\frac{3\pi-8}{4}$ (C) $\frac{4}{\pi}$ (D) $\frac{2-3\pi}{2}$ (E) $\frac{8+3\pi}{4}$

Homework: Worksheet 27

Wednesday 9/25	Today's Topic: Quiz - Avg ROC, Derivative (Limit Definition), Power Rule, Equation of Tangent Line
In-class Example: None	
Homework: Worksheet 29	

Thursday 9/26 and Friday 9/27Today's Topic: Derivatives Using a Calculator		
In-class Example: For each 1. $f(x) = x^3 - 3x + 7$,	problem, estimate the derivative using a calculator. find $f'\left(\frac{2}{3}\right)$.	
2. $f(x) = \sin \sqrt{x}$, find 3. $f(x) = \ln \left(\frac{1}{5-x}\right)$,	$f(x) = \sin \sqrt{x} \text{, find } f'(2).$ $f(x) = \ln\left(\frac{1}{5-x}\right), \text{ find } f'(1.3).$	
4. Write the equation of the line tangent to $y = \sqrt{\frac{x}{x^3 + 1}}$ at $x = 1$		
Homework: Worksheet 26		

In-class examples:

Ex. 1 The graph of f(x) is given below.

State the values at which f(x) is (a) not continuous and (b) continuous but not differentiable.

Ex. 2 State the values for which $f(x) = 2x^2 - 4x$ is differentiable.

Ex. 3 State the values for which f(x) = |x| is differentiable.

Ex. 4 For the function, $f(x) = x^{\frac{2}{3}}$, determine if f(x) is differentiable at x = 0.

Ex. 5 Determine if
$$f(x) = \begin{cases} x^2, & x < 1 \\ -2x+3, & x \ge 1 \end{cases}$$
 is differentiable at $x = 1$.

AP Multiple Choice $f(x) = \begin{cases} 3x+5 & \text{when } x < -1 \\ -x^2+3 & \text{when } x \ge -1 \end{cases}$ If f is the function defined above, then f'(-1) is (A) -3 (B) -2(C) 2 (D) 3 (E) nonexistent Homework: Worksheet 28 Tuesday 10/1 Today's Topic: Review for our test. In-class examples: None **AP Multiple Choice** Let f be a differentiable function such that f(0) = -5 and $f'(x) \le 3$ for all x. Of the following, which is not a possible value for f(2)? (A) -10 (B) -5 (C) 0 (D) 1 (E) 2 A. f(x)f'(x)g(x)g'(x)х 1 3 -2-3 4 The table above gives values of the differentiable functions f and g and their derivatives at x = 1. If h(x) = (2f(x) + 3)(1 + g(x)), then h'(1) =(A) –28 (B) -16 (C) 40 (E) 47 (D) 44 If $y = 5x\sqrt{x^2 + 1}$, then $\frac{dy}{dx}$ at x = 3 is (A) $\frac{5}{2\sqrt{10}}$ (B) $\frac{15}{\sqrt{10}}$ (C) $\frac{15}{2\sqrt{10}} + 5\sqrt{10}$ (D) $\frac{45}{\sqrt{10}} + 5\sqrt{10}$ (E) $\frac{45}{\sqrt{10}} + 15\sqrt{10}$ Homework: Worksheet 30 Wednesday 10/2 Today's Topic: Unit 2 Exam – Basic Differentiation Rules In-class examples: None

Homework: None